function roc_curve
y_true: The true class labels (ground truth) for the target variable. Shape should be (num_samples,).y_probas: The predicted probabilities or decision scores for each class. Shape should be (num_samples, num_classes).labels: Human-readable labels corresponding to the class indices iny_true. For example, iflabels=['dog', 'cat'], class 0 will be displayed as ‘dog’ and class 1 as ‘cat’ in the plot. If None, the raw class indices fromy_truewill be used. Default is None.classes_to_plot: A subset of unique class labels to include in the ROC curve. If None, all classes iny_truewill be plotted. Default is None.title: Title of the ROC curve plot. Default is “ROC Curve”.split_table: Whether the table should be split into a separate section in the W&B UI. IfTrue, the table will be displayed in a section named “Custom Chart Tables”. Default isFalse.
CustomChart: A custom chart object that can be logged to W&B. To log the chart, pass it towandb.log().
wandb.Error: If numpy, pandas, or scikit-learn are not found.